Extensions 1→N→G→Q→1 with N=C2xC62 and Q=C22

Direct product G=NxQ with N=C2xC62 and Q=C22
dρLabelID
C23xC62496C2^3xC62496,42

Semidirect products G=N:Q with N=C2xC62 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2xC62):C22 = D4xD31φ: C22/C1C22 ⊆ Aut C2xC621244+(C2xC62):C2^2496,31
(C2xC62):2C22 = D4xC62φ: C22/C2C2 ⊆ Aut C2xC62248(C2xC62):2C2^2496,38
(C2xC62):3C22 = C2xC31:D4φ: C22/C2C2 ⊆ Aut C2xC62248(C2xC62):3C2^2496,36
(C2xC62):4C22 = C23xD31φ: C22/C2C2 ⊆ Aut C2xC62248(C2xC62):4C2^2496,41

Non-split extensions G=N.Q with N=C2xC62 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2xC62).C22 = D4:2D31φ: C22/C1C22 ⊆ Aut C2xC622484-(C2xC62).C2^2496,32
(C2xC62).2C22 = C4oD4xC31φ: C22/C2C2 ⊆ Aut C2xC622482(C2xC62).2C2^2496,40
(C2xC62).3C22 = C4xDic31φ: C22/C2C2 ⊆ Aut C2xC62496(C2xC62).3C2^2496,10
(C2xC62).4C22 = Dic31:C4φ: C22/C2C2 ⊆ Aut C2xC62496(C2xC62).4C2^2496,11
(C2xC62).5C22 = C4:Dic31φ: C22/C2C2 ⊆ Aut C2xC62496(C2xC62).5C2^2496,12
(C2xC62).6C22 = D62:C4φ: C22/C2C2 ⊆ Aut C2xC62248(C2xC62).6C2^2496,13
(C2xC62).7C22 = C23.D31φ: C22/C2C2 ⊆ Aut C2xC62248(C2xC62).7C2^2496,18
(C2xC62).8C22 = C2xDic62φ: C22/C2C2 ⊆ Aut C2xC62496(C2xC62).8C2^2496,27
(C2xC62).9C22 = C2xC4xD31φ: C22/C2C2 ⊆ Aut C2xC62248(C2xC62).9C2^2496,28
(C2xC62).10C22 = C2xD124φ: C22/C2C2 ⊆ Aut C2xC62248(C2xC62).10C2^2496,29
(C2xC62).11C22 = D124:5C2φ: C22/C2C2 ⊆ Aut C2xC622482(C2xC62).11C2^2496,30
(C2xC62).12C22 = C22xDic31φ: C22/C2C2 ⊆ Aut C2xC62496(C2xC62).12C2^2496,35
(C2xC62).13C22 = C22:C4xC31central extension (φ=1)248(C2xC62).13C2^2496,20
(C2xC62).14C22 = C4:C4xC31central extension (φ=1)496(C2xC62).14C2^2496,21
(C2xC62).15C22 = Q8xC62central extension (φ=1)496(C2xC62).15C2^2496,39

׿
x
:
Z
F
o
wr
Q
<