Extensions 1→N→G→Q→1 with N=C2×C62 and Q=C22

Direct product G=N×Q with N=C2×C62 and Q=C22
dρLabelID
C23×C62496C2^3xC62496,42

Semidirect products G=N:Q with N=C2×C62 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C62)⋊C22 = D4×D31φ: C22/C1C22 ⊆ Aut C2×C621244+(C2xC62):C2^2496,31
(C2×C62)⋊2C22 = D4×C62φ: C22/C2C2 ⊆ Aut C2×C62248(C2xC62):2C2^2496,38
(C2×C62)⋊3C22 = C2×C31⋊D4φ: C22/C2C2 ⊆ Aut C2×C62248(C2xC62):3C2^2496,36
(C2×C62)⋊4C22 = C23×D31φ: C22/C2C2 ⊆ Aut C2×C62248(C2xC62):4C2^2496,41

Non-split extensions G=N.Q with N=C2×C62 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C62).C22 = D42D31φ: C22/C1C22 ⊆ Aut C2×C622484-(C2xC62).C2^2496,32
(C2×C62).2C22 = C4○D4×C31φ: C22/C2C2 ⊆ Aut C2×C622482(C2xC62).2C2^2496,40
(C2×C62).3C22 = C4×Dic31φ: C22/C2C2 ⊆ Aut C2×C62496(C2xC62).3C2^2496,10
(C2×C62).4C22 = Dic31⋊C4φ: C22/C2C2 ⊆ Aut C2×C62496(C2xC62).4C2^2496,11
(C2×C62).5C22 = C4⋊Dic31φ: C22/C2C2 ⊆ Aut C2×C62496(C2xC62).5C2^2496,12
(C2×C62).6C22 = D62⋊C4φ: C22/C2C2 ⊆ Aut C2×C62248(C2xC62).6C2^2496,13
(C2×C62).7C22 = C23.D31φ: C22/C2C2 ⊆ Aut C2×C62248(C2xC62).7C2^2496,18
(C2×C62).8C22 = C2×Dic62φ: C22/C2C2 ⊆ Aut C2×C62496(C2xC62).8C2^2496,27
(C2×C62).9C22 = C2×C4×D31φ: C22/C2C2 ⊆ Aut C2×C62248(C2xC62).9C2^2496,28
(C2×C62).10C22 = C2×D124φ: C22/C2C2 ⊆ Aut C2×C62248(C2xC62).10C2^2496,29
(C2×C62).11C22 = D1245C2φ: C22/C2C2 ⊆ Aut C2×C622482(C2xC62).11C2^2496,30
(C2×C62).12C22 = C22×Dic31φ: C22/C2C2 ⊆ Aut C2×C62496(C2xC62).12C2^2496,35
(C2×C62).13C22 = C22⋊C4×C31central extension (φ=1)248(C2xC62).13C2^2496,20
(C2×C62).14C22 = C4⋊C4×C31central extension (φ=1)496(C2xC62).14C2^2496,21
(C2×C62).15C22 = Q8×C62central extension (φ=1)496(C2xC62).15C2^2496,39

׿
×
𝔽